
n9o-255  

OCEAN FEATURE RECOGNITION USING GENETIC ALGORITHMS

WITH FUZZY FITNESS FUNCTIONS (GA/F3) *

by
C.A. Ankenbrandt 1, B.P. Buckles I, F.E. Petry I , & M. Lybanon 2

IDeparunent of Computer Science

Cemer for Intelligent and Knowledge-based Systems

301 Stanley Thomas Hall, Tulane University

New Orleans, LA 70118, (504) 865-5840

2Remote Sensing Branch

Naval Ocean Research and Development Activity

NSTL Station, MS 39529

ABSTRACT

A model for genetic algorithms with semantic nets is derived for which the

relationships between concepts is depicted as a semantic net, An organism

represents the manner in which objects in a scene are attached to concepts

in the net. Predicates between object pairs are continuous valued truth

functions in the form of an inverse exponential function (e'[31xl). l:n

relationships are combined via the fuzzy OR (Max [...]). Finally,

predicates between pairs of concepts are resolved by taking the average of

the combined predicate values of the objects attached to the concept at the

tail of the arc representing the predicate in the semantic net. The method

is illustrated by applying it to the identification of oceanic features in the

North Atlantic.
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functions
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BACKGROUND

Genetic algorithms are s problem solving method

requiring domain-specific knowledge that is often

heuristic. Candidate solutions are represented as

organisms. Organisms are grouped into populations

known as generations and are combined in pairs to

produce subsequent generations. An indlvidual

organism's potential as a solution is determined

by a fitness functiori.

Fitness functions map organisms into real numbers

and are used to determine which organisms will be

used {an_ how frequently) to produce offspring for

the succeeding generation. Fitness functions

often require heuristic information because a

precise measure of the suitability of a given

organism (i.e. , solution) is not always

attainable. An example is the recognition (i.e.,

labeling) of segments in a scene. General

characteristics of objects in the _cene such as

curvature, size, length, and relationship to each

other may be known only within broad tolerance

levels. That is, there is great variability in

the relationships among objects in different

scenes.

Selnantic nets (SNs) are effective representations

of binary relationships between concepts (e.g.,

objects in a scene). SNs denote concepts via

nodes in • directed graph. The arcs are labelled

by predicates. We introduce here a representation

of an organism whose fitness function evaluation

is dependent upon an SN context.

Because relationships (i.e., predicates) relating

concepts are not precise, their evaluation is in

the form of a truth functional with range [0,I]

rather than the traditional {0,I}. That is, we

use fuzzy logic [YA?5, ZA88, ZI85] to combine

heuristically the information concerning a

particular organism. Thus, we derive genetic

algorithms with fuzzy fitness functions {GA/F3).

GENETIC ALGORITHMS

Genetic algorithms (GAs) are search procedures

modelled after the _echanics of natural selection.

They differ from traditional search techniques in

several ways. First, GAs have the property of

implicit parallelism, where the algorithm is

equivalent to a search of the hyperplanes of the

search space, without directly testing hyperplane

values [H075, GO88]. Nearly optimal results have

been found by examining as few as one point for

every 235 points in the search space [G086] .

Second, GAs are randomized algorithms, using

operations with nondeterministic results. The

results for an operation depend on the value of a

random number. Third, GAs operate on many

solutions simultaneously, gathering information

from all current points to direct the search.

This factor mitigates the problems of local maxima

and noise.

From a mechanistic view, genetic algorithms are •

variation of the generate and test method. In

pure generate and test, solutions are generated

and sent to an evaluator. The evaluator reports

whether the solution posed is optimal. In genetic

algorithms, this generate and test process is

repeated iteratively over a set of solutions. The

evaluator zeturns information to guide the

selection of new solutions for following

iterations.

GA terminology is taken from genetics. Each

candidate solution examined is termed an organism,

traditionally represented as a list. The set of

Organisms maintained is termed a population, and

the population at a given time is termed a

generation. Each iteration envolves three steps.
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First, each organism in the current generation is

evaluated, producing a numerical fitness function

result. The criteria for evaluation is domain

specific information about the relative merit of

that particular organism. Better organisms are

assigned higher fitness function values. Second,

some organisms are selected to form one or more

organisms for the next generation. Specifically,

the number of copies of each organism selected is

directly proportional to its fitness function.

Third, some of those organisms selected are

modified via genetic operators. Each genetic

operator takes the chosen organism(s), and

produces a new organism(s). The most common

genetic operators include crossover and mutation.

This iterative procedure terminates when the

population converges to a solution.

The crossover operator takes two organisms

selected and combines partial solutions of each.

When organisms are represented with lists, single

point crossover can be viewed as combining the

teft hand side of one organism chosen with the

right hand side of the other, and conversely.

This creates two offspring. The crossover point,

that point where the crossover takes place, is

randomly determined.

The mutation operator uses a minimal change

strategy. It takes a selected organism, and

changes the value at one randomly determined

position. This corresponds to a tight locel

search. The offspring produced is identical to

the parent except at the mutation point.

GENETIC ALGORITHM PROBLEM MODEL

FOR OCEANIC FEATURE LABELING

Scene recognition is an application for which the

GAmodel we propose is suited. For example, Fig.

l(a) is a segmented image of the North Atlantic

for which Fig. l(b) is the original image. The

lines (referred to here as segments, el, s2, .--7

represent boundaries betweenwarmand cold regions

of sea water. The problem is to classify the

segments as Gulf Stream North Wall (NW), Gulf

Stream South Wall (SW), cold eddies (CE), warm

eddies _E),continental shelf (CS), and "other"

(0).

Relationships which can be expressed as fuzzy

truth functions are known to exist within or

between classifications. Principal among these

are (17 the average width of the Gulf Stream is 50

kilometers, (2) the average diameter of an eddy is

I00 kilometers, (37 cold eddies are usually south

of the Gulf Stream, and (4) warm eddies are

usually north of the Gulf Stream. To t_es--e-_*one

nnast add the trivial (yet necessary) relatlonships

such as the south wall is at a lower latitude than

the north wall and the known geophysical

coordinates of continental shelves.

A scene consisting of classification categories

(carl, cato, . .., cat,) and relationships

ezpressed as'truth functions (P(1)ij , P(2)ij .... )

between categories can be modelled as a semantic

net (or, more precisely, an association list). &

generic one ks shown An FAg. 2. Segments ere

a. Segmented Image b. Original Infrared Image

Figure I, Oceanic F_acures
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Figure 2. Generic Semantic Net for Oceanic Features

attached to the categories via the INST (instance)

relation. An allele (or gone) is a category namo.

An organism is s list of categories, one allele

for each segment. For example, given six segments

then (NW, NW, SW, CS, CE,O) and (CE, SW, CE, O, O,

CS| are representative organisms. Formally, let

an association list be defined as A = _V,p> where

V = {catl, cat2, . .., Oatm} is a set of

categories, and P = {Pij (g) I i,J _ m, g
I

1,2, .... , rij} is a set of binary predicates.

These predicates describe the relationships

between categories and the ideal relationship

between segments assigned to these categories.

Let an organism £or spatial labeling is defined as

Q n <S, INST>, where S = {Sl, s 2, ..., an} is a

set of segments, and ZNST: S -> V is a function.

Crossover Operators

There ere three applicable crossover operators.

These include single point crossover, two point

crossover, and varying multiple point crossover

[BO87] . Crossover operators require the

imposition of a total order on the segments in S.

if i = J; s i > sj ifLet,i<aSifi< "i"'J
i> J. Denote by INSToi the instance mapping for

organism 0 i .

Single Point Crossover. Given < Sl, s2, ..., an>,

choose a random integer k, 1 _ k < n. For parent

organisms Ol and 02 create an offspring, O', such

that

I ZNSToI (s i) if s i E {Skl, succ(Skl},
ZNSTo, (si)= . .., prod (Sk2))

INSTo2 (si) otherwise

Varying Multiple Point Crossover. For parent

organisms 01 and 02 , create an offspring O' such

that

I INSToI (sl) with probability 0.5

ZNST O, (si) s ]

INST02 (si) with p=obability 0.5

Mutation Operator

Our mutation o_erator selects one segment randomly

and asslgtts it to a randomly determined category.

Choose two random integers kl, 1 _ kl _ n, and k2,

1 _ k2 _ m. Remove Skl from its current category

in organism O and attach it to catk2 (i.e., set

ZNSTo(Skl) s catk2 ) .

Fitness Function

For the model, the fitness function is the sum of

all satisfied predicates in the semantic net. Let

E denote the function. Let Pi (g) , be defined as

above, with m possible categories. Then

m m

I ZNSToI (si) if i _ k rij
ZNSTo, (si) . E - Z Z Z Pij (g) (l)

INST02 (si) if i > k Jmi i-I g=l

Two Point Crossover. Let < Sl, s 2, ..., an> be a

circular list. Formally, succ(s i) m Si+l

(pred(si+ I) = s i) if i < n and succ(s n) - s 1

(pred(Sl) = Sn). Choose two random integers, kl

and k2_ Fo=parent organisms 01 and 02 create an

offspring, O' such that

pij(g ) is a predicate for a relationship between

caEegories, i and J. Each predicate Pi 4(g) has a

corresponding derived predicate, predij_g)(k, I),

for an analogous relationship between segments s k

and s I, where s k is in category i and s I _a in

category J. Pie(g ) is interpreted based on the
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no_2ualized truth value of the derived predicate.

Specifically,

I Z Z Pzedij (g} (k, I)..__sl__S_ (2)
Pij(g ) _ Icatil x ]catj]

I
O otherwise

where Jcati[ and JcatjJ are the number of segments
classified as category i and category J,

respectively. Because all such predicates are not

defined between all possible pairs of segments,

the normalizing factor (the denominator) is

subject to redefinition on a case by case basis.

Alternatives to (2) are described following the

description of derived predicates below.

An example of a fuzzy predicate PiJ (g) from our

domain i8 the relationship "is near", where

category i "is near" category J . The

corresponding derived predicate predij(g)(k,i)

describes the relationship between two segments,

s_ In category i and s I in category J. The sum of

p_edij(g) (k,1) for all possible pairs of segments

e k aria 81 is normalized by the maximum possible.

Definitions of predlj (g)(k,l) are dependent on the

underlying semantics of the problem domain. One

approach is to define them prepositionally as

(O, I} if a measurable relationship between s k and

01 is within or beyond 8o_e threshold. A second

approach preferred here is to define them as fuzzy

truth functions on the interval (0,1]. Inverse

exponential truth functions are COmmonly used in

fuzzy set theory tO measure the "nearness" of two

concepts. An alternative nearness measures are in

_ZI85]. For example, if the description of Pij (g)

contains a nominal value (e.g., the SW is

approximately 50 kilometers from the NW) then let

X o represent the nominal value and

pzed(g_k, 1) = • -_EXo-X[ (3)

ij

w]here

X is the observed value corresponding to the

8_-_aaura (distance, cuEvative, angle of

declination) between S k and a 1

is a constant cent=act factor in [0,I]

which emphasizes the magnitude of the

difference between the observed and nominal

value when inc_aeed

There ere many situations foe which the nearness

measu_ Is not bounded by an ideal but the closer

to • k the better. _n such cases, x O can be

xepla0edby zero in foz_ula (3),

"Not near" Or "as distant as possible" may be

meeJuzedbythe fuzzy complement of (3).

Such relationships can be considered as ordinary

propositional truth values.

_) ( 1 if s k and s I are so related
i (5)

pre (k,l) m _ 0 otherwise

If there is a measure X associated with the

relationship and X k > X 1 when the condition is

met, the derived predicate of formula (5) can be

represented by the ceiling function

pre_g)= [(Xk-X1)/(IXk-X1]+I)]
iJ

(6)

For P(g)_, each object attached to cat i requires

[cetjj evaluations of predl_ij. The multiple

evaluations are combined to a s£ngle value using

fuzzy OR

max CPr_)i|k'l)];O• for .echs k in cat i

s I

('7)

This corresponds to finding the best segment, el,

that matches the relationship for a given segment

8 k. By contract, the combination rule

_n [prea)(_ ljk,j1)]; for each "k in cati (e)
s 1

corresponds to fuzzy AND. The heuristic implied

by the formula (2) is

Z pred:_k,l)/Jcatj[; fez each s k in cat i (9)

s 1

which corresponds to the average truth functional

value Of 8 k with all s I segments in catj.

Let f(g) ij(k) stand for the segment level

combination rule, (7), (8), or (9) . Possible

aggregation rules to compute Pij (g) are

g)
z ,_itk_,'lcatil

8 k

(10)

(II)

k

(Z2)

which correspond to average, best, and worst

match, respectively. The aggregation rule of

formula (I0) is the one implied by formula (2).

pzed.)(k,l)(a . I - f() (4)

where fO is the right side of formula (3).

|oma relationships such as "above" or "smaller"

are not easily modelled as nearness measures.

EXAMPLE

Fig. 3 is • reproduction of Fig. l(a) with most

segments labelled (correctly). Eight segments ere

l_lled as s I, a 2 .... , 88 and are used below In

an example. Table I lists and defines ell

predicates and derived predicates required for the

semeBtic net of Fig. 2. The notation Icathl
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Table I.

run_lonal [Pred(k.l)]/normal£zer

max (exp(-O.5 x)]/Icoorl
z

max (exp(-O:5 x)l/(lCatcel-l)
Z where k_l

(llloatvlll_(expl-O.SllOO-xl)l/Ioat_l

maxJex'p(-O.S x) l/(Ioatvel-1)
• wnero k_l

(l/ICahnwl) _ r(xk-xll/(lXk-Xll+l)] J/Icatwal

1

max _ex'p(-O:5 x)J/Icatnwl-1)
• w_aze k_

(l/)cahswl_Zl_(-O.SlSO-xlll/loatnvl

(1/lea, sell _ r ((Xk-Xll/lJXk-Xll+l)] ]/jcatn.I

[exp(-O.5 x)|/Icatswl-l)
x w_ezk k#l

(1/iCe, eel) _ [ ((Xk-XlI/IIXk-XlI+I)] l/Ice, awl

(1/Ioetoall_|l_:'p(-O.511OO-xll|/Ioatool

max _axp(:O:5 x)]ll(catcel-1)
X where k_1

Predicate Descr£pticns

Descrllpt 4on

near known C, coordinates (distance m X)

near other C3 segment (d'Lltance = x)

WE _lamoter neat i00 km (distance = x)

neur other WE segment (distance = x)

WE north of NW (Xk and X 1 ere Istltudas)

neat other NW segment (distance - x)

NW 5Okra from SW (Ale,ante m x)

NW north of SW (X k and X I ate latitudes)

near other $W se_nt (distance - x)

81f noz_h Of CU (X k and X 1 am lat£tudes)

CE die.her nea_ 100 km (dish'.ante - x)

near other CE segment (distance = x)

p(1) m _ezp(:O:S •))/J (Carol-l)
o,o • wneze 6.I

pc *1 (1/Icat, ll_[l-upl-O.Sxll/lcatol

neat other 0 segment (distance - x)

not neat CS, WE, CE, NW, o: SW

refers tc the number of segments that are an

instance of category h. The value 0.5 is chosen

arbitrarily for _ in all derived predicates. The

4_ponontial form of derived predicates ks used for

all relationships except "north of" where formula

(6} i8 substituted. The default value for any

predicate or derived predicate is zero should a

denominator evaluate to zero.

The eight segments distinguished in Fig. 3 are

characterized in Table 2. For this example, we

need only the geophysical coordinates, the

distances between segment centroids, and the

distances between the closest points of segments.

A larger, more complete description might also

contain the length and degree of curvature of each

segment.

Table 3 lists six organisms together with their

f_tness function values which are computed using

the predicates in Table I. The fitness function

ks given by formula (2). The combination and

aggregation rules are formulas (7) and (12),

reo_ctively. Derived predicates are variations

of formulas (3) and (4) except "north of'*, which

i8 represented by formula (6) with the requisite

measure being latitude. Organism 0 1 has no

segments labelled incorrectly. 0 2 has two

segments labelled incorrectly. 0 3 through 0 6 have

3, 3, 5, and 8 incorrectly labelled segments,

respectively_ The fitness function values

correspond roughly to the correctness of the

labelling. Additional predicates (i.e., a more

complex semantic net) would improve upon the

ordering and separation in most cases.

CONCLUSION

A model for labelling complex scenes via genetic

algorithms with fuzzy fitness functions evaluated

over semantic nets and GAs is possible. Truth

functionals indicating the degree to which

specific interfeature relationships are fulfilled

are _ombined at the segment level then aggregated

at the category level using fuzzy set operators.

We are currently investigating such issues as the

effect of many predicates clustered on one or two
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Figure 3. Segmented Image With Correct Labels

Table 2. Segment Deaez&ptozs

m. Ce_tzoid IPosJLtio_ L. fztet£_s of Lat'[%'ade tnd _wTit,_de

legeent LatLte4t ;,onqi_sde

$1 3).iI ?O.Oi

I 2 31.12 ii.i|

93 39.52 66_I4

S 4 31.37 (6.67

$5 3=.33 S6,=2

S G 37.52 gG,OE

$? 3_.07 G5.11

S I 3_.$4 (4.|(

b. D&stlm_mis llet,,q, enCentzoLd4 (kL1oamtezm|

81 82 |3 St S b 8 S S_ S I

s, svs.=s =(v.8_ =o8._o )e.,_ 84.3_ o.oo ss._v :=s.8¢

S? 348.88 =43.85 1_7.1_ 75.47 104.2_ S8.4_ 0.00 teS.St

S| a1_,78 31S.3S I89.20 184,75 288.84 223.84 165.$1 0.00

_. CZo=e|_ _rx.43d_&ee (_lLlommZeze)

B1 $2 B3 |4 BS E8 B 7 118

81 0.00 I27.13

32 127.13 0.00 - 80,42

s 3 - 0.00 $1.2S

,, - ,o., ,_+:, o.oo *:.:=
ss - - *2.+: o.oo

,, - - - ..,8 o.,
,_ - ,=.to ,8.. -
SO . + , 35,00 -

- 42.80 -

15.39 24.93 3S.00

0.00

0.00

- O.O0 20._2

20._2 0.00
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Table 3.

[TB86]

Fitness Function Values for

Selected Organisms

[YA75]

01 ,, <_W SWtm Sll CE (:1 CZ CZ> ; •(01_ - 2.2098

O 2 , <•R SW NW _ CE C_ CZ r_> ; I(O27 - 2.2511 [ZA88]

03 m <NW S%; NW H (:I CE _ SW> ; E(O3_ - 2.1251 [ZI85]

04 m <SW SW t_W CE UW CZ CE CZ> ; • (04) s I. 4731

05 _ <NW I_W CE CE $W RW SW CZ> ; S(Os_ . 1.6757

O 6 _ <SW CE SW CE SW NW 5_ JW> ; E(O6_ _ 0.9235
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categories, alternate forms for the truth

functionals themselves, and the crossover rules.

Our image set consists of six segmented infrared

photograph• of the North Atlantic, each photograph

having a different degree of observation. Our

testbed will consist of a GA algorithm capable of

manipulating the alleles' correspondence to the

semantic net.
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